5 Deformed shape invariance and exactly solvable Hamiltonians with position - dependent effective mass

نویسنده

  • V M Tkachuk
چکیده

Known shape-invariant potentials for the constant-mass Schrödinger equation are taken as effective potentials in a position-dependent effective mass (PDEM) one. The corresponding shape-invariance condition turns out to be deformed. Its solvability imposes the form of both the deformed superpotential and the PDEM. A lot of new exactly solvable potentials associated with a PDEM background are generated in this way. A novel and important condition restricting the existence of bound states whenever the PDEM vanishes at an end point of the interval is identified. In some cases, the bound-state spectrum results from a smooth deformation of that of the conventional shape-invariant potential used in the construction. In others, one observes a generation or suppression of bound states, depending on the mass-parameter values. The corresponding wavefunctions are given in terms of some deformed classical orthogonal polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformed shape invariance and exactly solvable Hamiltonians with position - dependent effective mass

Known shape-invariant potentials for the constant-mass Schrödinger equation are taken as effective potentials in a position-dependent effective mass (PDEM) one. The corresponding shape-invariance condition turns out to be deformed. Its solvability imposes the form of both the deformed superpotential and the PDEM. A lot of new exactly solvable potentials associated with a PDEM background are gen...

متن کامل

ua nt - p h / 05 12 04 6 v 1 6 D ec 2 00 5 Hamiltonians with position - dependent mass , deformations and supersymmetry

A new method for generating exactly solvable Schrödinger equations with a position-dependent mass is proposed. It is based on a relation with some deformed Schrödinger equations, which can be dealt with by using a supersymmetric quantum mechanical approach combined with a deformed shape-invariance condition. The solvability of the latter is shown to impose the form of both the deformed superpot...

متن کامل

Deformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem

We show that there exist some intimate connections between three unconventional Schrödinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrat...

متن کامل

Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry

Second order supersymmetric approach is taken to the system describing motion of a quantum particle in a potential endowed with position-dependent effective mass. It is shown that the intertwining relations between second order partner Hamiltonians may be exploited to obtain a simple shape-invariant condition. Indeed a novel relation between potential and mass functions is derived, which leads ...

متن کامل

Non-Hermitian von Roos Hamiltonian’s η-weak-pseudo-Hermiticity and exact solvability

A complexified von Roos Hamiltonian is considered and a Hermitian first-order intertwining differential operator is used to obtain the related position dependent mass η-weak-pseudo-Hermitian Hamiltonians. Two ”user -friendly” reference-target maps are introduced to serve for exactsolvability of some non-Hermitian η-weak-pseudo-Hermitian position dependent mass Hamiltonians. A non-Hermitian PT -...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005